Review on Genetic Algorithm and Its Application

نویسندگان

  • Hemant kumar bansal
  • Devesh Mahor
چکیده

Genetic algorithm is very powerful technique to find approximate solution to search problems or patterns through application based on biological terms. Genetic algorithms use biologically inspired techniques such as genetic inheritance, natural selection, mutation, and sexual reproduction (recombination, or crossover. The general strengths of genetic algorithms lie in their ability to explore the search space efficiently through parallel evaluation of fitness and mixing of partial solutions through crossover, maintain a search frontier to seek global optima and solve multi-criterion optimization problems. In this paper, Application based on scheduling static tasks in homogeneous parallel system is discussed. Especially uni-processor system would not be sufficient enough to execute all the tasks parallel so it requires an efficient algorithm to determine when and on which processor a given task should execute A static task can be partitioned into a group of subtasks and represented as a DAG (Directed Acyclic Graph), that problem can be stated as finding a schedule for a DAG to be executed in a parallel multiprocessor system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

A New Multi-Objective Optimization Method Based on Genetic- Fuzzy Algorithm and its Application in Induction Motor Speed Control

In this paper, a new method based on genetic-fuzzy algorithm for multi-objective optimization is proposed. This method is successfully applied to several multi-objective optimization problems. Two examples are presented: the first example is the optimization of two nonlinear mathematical functions and the second one is the design of PI controller for control of an induction motor drive supplie...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

Application of Genetic Algorithm in Kinetic Modeling and Reaction Mechanism Studies

This study is focused on the development of a systematic computational approach which implements Genetic Algorithm (GA) to find the optimal rigorous kinetic models.A general Kinetic model for hydrogenolysis of dibenzothiophene (DBT) based on Langmuir-Hinshelwood type has been obtained from open literature. This model consists of eight continuous parameters(e.g., Arrhenus  and Van't...

متن کامل

Application of Single Objective Genetic Algorithm to Optimize Heat Transfer Enhancement from a Flat Plate

The optimal shape of a two dimensional turbulator above an isothermal flat plate is found by using numerical simulation. The turbulent boundary layer over the flat plate was disrupted at various situations by inserting a quadrilateral bar where the boundary layer thickness kept more than three times greater than the insert\'s height. As a result, the overall heat transfer coefficient of the wal...

متن کامل

Application of artificial neural network and genetic algorithm to modelling the groundwater inflow to an advancing open pit mine

In this study, a hybrid intelligent model has been designed to predict groundwater inflow to a mine pit during its advance. Novel hybrid method coupling artificial neural network (ANN) with genetic algorithm (GA) called ANN-GA, was utilised. Ratios of pit depth to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the hydraulic head (HH) in the observation w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012